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It Is usually assumed that In magnetohydrodynamlc installations the length 
of the channel Is much greater than Its width. This permits the performance 
of flow calculations by the one-dimensional scheme. However, these calcula- 
tions are not applicable to regions where a sharp ahange &n parameters of 
the applied electromagnetic field takes place (over a length of the order of 
channel width). Clarification of the character of the flow ln such regions 
is therefore of Interest. In [l and 21 electrical fields and fields of cur- 
rents In the region of entrance of flow into the magnetic field and In the 
region between electrodes were studied. In these a@qea the flow was aon- 
sldered as given and the influence of electromagnetic field on flow was 
neglected. In [3] the linearized problem of the Influence of electromagnetic 
field on the flow of an Incompressible fluid In the vlclnlty of the electrode 
ends Is examined. The magnetic field was assumed to be constant and dlffer- 
ent from zero ln the region between the electrodes. 

In this paper the Influence of the electromagnetic field on supersonic 
gas flow Is examined. Since the interaction parameter and the magnetic 
Reynolds number are usually small, the problem was examined In the linearized 
formulation. The magnetic field was considered as specified and variable 
along the length of the channel. 

P~Itlon OS Problw, We shall examine the steady two-dimensional prob- 

lem of supersonic flow of a conducting gas ln a flat channel - a < I/ < o , 

--ra<x<co. The walls of the channel for 3 < 0 are insulators, for X> 0 

conductors. The gas Is assumed to be perfect and Ideal with constant elec- 
trical conductivity o . Ohm's law Is taken In the form 

j=, F,+LxH 
( c ) 

which Is valid for a sufficiently high gas density. 

For x=-m the gas moves with translational supersonic velocity U 
while the electric field E Is equal to zero. In finding the electrical 
field It Is assumed that the field Is bounded at x = 0~ . 
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Assume the 

to be small 

The smallness of Rm permits the Induced magnetic field to be neglected. 

magnetic Reynolds number R, and the Interaction parameter N 

4naUa 
&I=~- 

N = afT02a 

pue2 

Let the given field have the form 

H = H (x) e,, H (4 = g (k2 yyjq + ~2p/a)-l for X < () (I) 

Here er 18 the unit vector perpendicular to the plane of flow, k Isa 
Parameter characterizing the profile of the magnetic field. 

Since the InteraCtIOn parameter ,v Is assumed to be small, the perturba- 

tions of velocity and thermodynamic quantities are also small. 

In the first aPproxl~tlon, therefore, the electric keld and currents 

are determlned by the given constant velocity of the gas and by the magnetic 

field. Then the electromagnetlo force and the Joule heat are computed, and 

from linearized equations of motion all hydrodynamic parameters are found. 

In this fashion the general system of magnetohydrodynamlc equations in this 

case is split up into two systems with corresponding boundary conditions. 

For determlnatlon of electric field 1 = grad (D and the current we have 
equations of continuity of current and Ohm’s law, I.e. 

div j’ = 0, j’ = [(grad q)’ - h (2) cl/l (2) 

Here primes designate nondimensional quantities determined by Equations 

2 
x’=n, yL+ 

4na 
jl=mj’ h (x) = $p , grad cp (grad 9)’ = -..---- 

H,iJ I c 

Since the potential of eleCtrodea Is constant and since on insulators the 
normal Component of current IS absent, we have the following boundary con- 
ditions for the nondlmenslonal potential (3) 

(P’=Cl=&& 
%’ 

Ior y’= f 1, x’>O, I@- = h (x) for y’=fl, z’<O 

I(gradcp)’ 1 = 0 for x’=-co, (grad cp)’ = vu for 5’ = 00 

The last condition arises from the boundedness of the electric field at 
x-0. Linearized hydrodynamic 

- ::-I,, equations have the form 

gjji = ‘r (-r - 1) MaQ 

F, = h (x) [ g-h(x)] 

Fv = -g&Z) 
Q = [(grad cp)’ - h (2) eu12 

(4) 



Nondimensional quantities are introduced by Equations 

Here p,, Is the value of the unperturbed density, 
e* 

v and 8 mft, 
perturbations of density, velocity and entropy, reepec lvely. 

In this connection the perturbation of velocity must satisfy the boundary 
conditions 

VI = 0 for y’=fl, v’ = 0 for x’=-00 

As la known, system (2) Is reduced to Laplace’s equation for cp with 
mixed boundary conditions (3). 
the equation of Keldyah-Sedov. 

Thle problem can be solved [l and 23 through 

the solution has the form 
For a magnetic field given by equality (1) 

?$_ (k2 + 1) (e’” Cos 28 - kae4’) + (5) 
ay 1 + k4e4= - 2k2eza cos 28 

+ A (a, B) ‘v/k2 1 - kaea sin p - kze2” cos 28 - k’e3” sin b _ 
ka 1 - 2kze2” cos 28 + kre4” 

- B (a, B) 1/P d- 11 
- e” cos p + e2” sin 28 - kae3= cos @ + 

- 2kae2= cos 28 _t k”k” 

Vi + 2e2= Cos 28 + e*” - 1 - e20r cos 2/3 % 
- 2 + hea” cos 2@ f 2e4’ 

acp -e- (kr + I) 2” sin 2s 
8X 

1 + 
k4e4= - 2k2e2” 

cos 
28 + 

+ A (4 PI m e” cos @ + e2” sin 28 - k2e3’ cos p 

1 - 2kaeaa cos 28 -j- k4e4= 
+ 

+ B (?, B) l/ka + 1, 1 - kze” sin p - k*e’” cos 28 - tiesa sin p + 
k‘J - 2k*eaa cos 2@ + k4e4” 

+ B (,-J, @) (q -v) _ yO+ + ;‘~;;~c;;;~~~cos2~~ 

A (a, B) = 
Vi + 2e2” Cos 2g + e4” - 1 + e2” “’ 

2 f 4ea sin $ f 2eaa 
) 

B 6% B) = 
v/1 + 2e2” Cos 28 + eoO + 1 - e2” 

2 + 4e” sin j3 + 2eaa 

rr = _ ? _ v/ka + i + h4 + 1 

h? k2 

We note that the electric field In the channel Is independent of the form 
of the magnetic field in the region between the electrodes since the field 
enters only through the boundary conditions on the Insulator. 

Using these expresslons we can calculate from (2) and (4) the dletrlbu- 
tlon of currents, of forces and of dlaelpatlon In the channel. Flea. 1 
and 2 present the field of directions of electric current and the dlstrlbu- 
tlon of dissipation across the channel for different values of x at k-1. 

From system (4) we ellmlnate p and 5 and obtain 
(6) 
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In this connection o’ and e;’ are found from Equations 
X’ 

C'.: y (7 - 1) 

Equations of characteristics of the system of equations (6) have the form 

--00 

For,numericzl 
and 

solutlon of the problem an orthogonal net of points ~6 
was selected in such a manner that 

selec P - ed equal to l/Ma -_1 Ay’. 
A$= Y~+~ - ?J,,,= 0.1. AX” was 

Y 

For determination of values u’, VI, p’ and p’ at the point x’,$, the 
values of these quantities at points 

,, ,?I,* 
x~_&-l? z;i-lY?w %-$fmt1* 

were utirlzed. For computation of integrals in solving Equations (8) and 
(7), the trapezoid equation without interstitial polnts between points of 
the net was utilized here. 

Corr@utatlons were crarried out on the ‘Strela’ electronic computer for 
combinations of parameters presented in Table 1. 

Table 1 Table 2 

1:-g 
-1:55 
-0.65 

luvtJCD. The presence of ring currents with a singular point like a cen- 

ter on the axis of the ohannel at the entranae of the flow into the rrmglnatlc 
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field (Flg.1) appears as a characteristic peculiarity of the electric current 

field. The region of ring currents Is separated from the region where the 

currents sre closed through the electrodes by a sepsratrlx which terminates 

on the walls of the channel at x e 0 In saddle singular points. 

On the electrode ends the current density becomes Infinite, however, the 

total current, the total amount of Joule heat and the Impulse which are 

transferred to the fluid ln any region near these singular points are finite. 

With Increase In parameter k , I.e. with motion of the magnetic field 

out beyond the electrodes, the region of ring currents also moves away up- 

stream. Thus, values of abscissas of the singular point center X" and of 
the saddle singular point X' are presented In Table 2. 

If the load coefficient Is decreased, the region of ring currents Is also 

displaced upstream and the density of currents Increases. 

In the downstream direction the field of currents rapidly becomes one- 

dimensional. This, at one quarter of channel width from the electrode ends 

(~'"0.5) the ratio of currents j./j,~. 0.015 (k - 1). 

D Q 
/ Y / 

Fig. 3 Pig. 4 

Joule dissipation is small for large negative X* (Flg.2). (In Fig.2 and 
in the following figures the values of 2 ' for which the curves are presented 
are shown next to the corresponding curves). For example 0 < 0.05 for 
k- 1 at x'= - 1.65. 
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For x’ comparable to X’, dissipation at the wall increases at the expense 
of increase in ourrent density. In the vicinity of the singular point center 
the dissipation decreases. In the vlclnity of the separation line between 

currents (aeparatrlx) dissipation In the 
central part of the channel Increases 

sharply l At the walls It Is the opposite; 
dissipation decreases to eero in the vlci- 
nltgofthesaddles@iularpzdnt.Inthetici- 
nity where the electrode starts, a sharp 
increase in dissipation omurd near the 
walls. After tbat a smoothInS of dlssi- 
patlon over the cross-se&ion takes place. 
At x’- 0.85 for k I 1 and 51 = 0.45 
the relative change of 0 across the 
channel is of the order of 0.03. 

Since for decrease In k the saddle 
singular point approaches x’= 0 , the 

total quantity of heat, given off ln the vicinity where the electrode starts, 
decreases due to small dissipation in the vicinity of the saddle singular 
point. 

With deoreases in the load aoefficlent dissipation 0 Increases. 

The Values of 0 on the axls of the channel for h I 1 are presented 
for three values of x’ 

x’ ~~-0.25 -0.05 0.65 

Q =0.06 0.27 0.31 for qzo.45 
Q =0.12 c1.39 0.49 for qzo.30 

Msslpation determlnes the lnarease in entropy. A plot of entropy for 
k I 1 , N - 1.4 , q I 0.95 la presented in Hg.3. 

For large negative X’ the pressure changes little across the channel. 

Thps, for k - 1 , 1( - 1.4 and ?J - 0.45 at a?'- - 1.15 the relative 



change of pressure across the channel la of the order of 0.2 . For x’ of 

the order of X', near the wall a transverse force appears directed toward8 

the axla of the channel. Thle force decreases the pressure ln the indicated 

region. As a result of this a region of rarefactlon arises on some part of 

the wall. In this region a flattened expansion wave Is formed, 

In the vicinity where the electrodes start, a compression wave la formed 

at the expense of Increase in dissipation and decelerating force. With 

decrease ln k this compression 

discharge ln this region. 

-u 

-1. d 

-0.8 

-04 

0 Y / 

Fig. 7 

tlon (Figs. 6 and 7). 

wave becomes weaker due to decrease In heat 

After transition through the region of 

strong dissipation an expansion wave la 

formed which Is particularly intensely manl- 

Seated In the case k - 1 , q I 0.3 and 

jf I 1.4 when the dlaalpatlon in the vlcl- 

nlty where the electrodes begin la eapeclally 

great. 

For positive values of x’(x’> 0.25) a 

linear increase with respect to x’ of the 

average pressure over the cross-section 

occurs. Waves mentioned above propagate 

against this background. Curve8 for prea- 

sure distribution are presented In Pigs. 4 

and 5. 

For large negative X’ uniform decelera- 

tion of the stream takes place (u < 0) as 

a result of heat discharge due to dlsslpa- 

Further downstream the deceleration In the center part decreases due to 

increasing accelerating force. For x’ close to w acceleration of the 

stream near the wall takes place produced by the negative pressure gradient. 

In the vicinity of the aeparatrlx aharp deceleration of the stream co~nces. 

Further a linear, with respect to x’, decrease of the average magnltude of 

velocity over the cross section occurs. 

The magnitude of perturbation of transverse velocity Is by an order emal- 

ler than the magnltude of perturbation of longitudinal velocity, i.e. 

v’/u’m 0.1 . In the region of ring currents a compression of the stream 

takes place towards the center (v’< 0 for y > 0) due to transverse forces. 

After passing through the center the stream expands again and a compressIon 

wave Propagates through the stream from the electrode ends. Further these 
waves propagate downstream. 

In conclusion we note that approximately one quarter of channel width 

downstream from the beginning of electrodes the stream already beoomes prac- 

tically uniform and from here down can be computed from one-dlmenalonal 
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theory. As Initial data for such a calculation It is necessary to take quan- 

titles which are obtained from two-dimensional theory after their averaging 

over the width of the channel. If one is interested not only in the average 

characteristics of 

waves, which arise 

the linear theory, 

nonlinear theory. 

the stream, It is possible to examine the propagation of 

at the entrance and which In this paper are computed by 

against a background which is computed by one-dimensional 
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