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It 1s usually assumed that in magnetohydrodynamic installations the length

of the channel is much greater than its width. This permits the performance
of flow calculations by the one-dimensional scheme. However, these calcula-
tions are not applicable to regions where a sharp change in parameters of

the applied electromagnetic field takes place (over a length of the order of
channel width). Clarification of the character of the flow in such regions
is therefore of interest. In [1 and 2] electrical fields and fields of cur-
rents in the region of entrance of flow into the magnetic field and in the
reglon between electrodes were studled. In these cases the flow was con-
sldered as glven and the influence of electromagnetic field on flow was
neglected, In [3] the linearized problem of the influence of electromagnetic
field on the flow of an incompressible fluld in the vicinity of the electrode
ends 1s examined. The magnetic field was assumed to be constant and differ~
ent from zero in the reglon between the electrodes.

In this paper the influence of the electromagnetic field on supersonic
gas flow 1s examined. Since the interaction parameter and the magnetic
Reynolds number are usually small, the problem was examined in the linearized
formulation. The magnetic field was considered as specified and variable
along the length of the channel.

Formulation of problem. We shall examine the steady two~dimensional prob-
lem of supersonic flow of a conducting gas in a flat chanmel — g4 < y<a ,
—®» < x < » . The walls of the channel for x < 0 are insulators, for x> 0
conductors. The gas 1s assumed to be perfect and ideal with constant elec-
trical conductivity ¢ . Ohm's law 1s taken in the form

j=o(E+-=xH)
which 1s valid for a sufficiently high gas density.

For x = — o the gas moves with translational supersonic velocity
while the electric fleld F 18 equal to zero. In finding the electrical
fleld 1t 1s assumed that the field 1s bounded a8t x = = .
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Assume the magnetic Reynolds number R, and the interaction parameter ¥
to be small sHya

pUc3
The smallness of R, permits the induced magnetic fleld to be neglected.

Rmzlmcsl]a, N =

2

Let the given fileld have the form

Hy tor 20
H=H( (x)e H (z ={ g 1
( ) 71 ( ) Ho (k2 + 1) emx/e “ _{_kze-:x/a)_l for 20 ( )
Here e, 1s the unit vector perpendicular to the plane of flow, » is a
parameter characterizing the profile of the magnetic field,

8ince the interaction parameter ¥ 1s assumed to be small, the perturba-
tions of velocity and thermodynamic quantities are also small.

In the first epproximation, therefore, the electric field and currents
are determined by the given constant velocity of the gas and by the magnetic
field. Then the electromagnetic force and the Joule heat are computed, and
from linearized equations of motion all hydrodynamic parameters are found.
In this fashion the general system of magnetohydrodynamic equations in this
case 1s spllt up into two systems with corresponding boundary conditions.

For determination of electric field B = grad ¢ and the current we have
equations of continuity of current and Ohm's law, 1i.e,

divj =0, ¥ = l(grad @) — h (2) ¢] 2)
Here primes designate nondimensional quantities determined by Equations
z , Y . 4na __ H(2) ,  gradg
e =2 Y= V=gem,b P& =g . GEde) =gy

Since the potential of electrodes is constant and since on insulators the
normal component of current is absent, we have the following boundary con-
ditions for the nondimensional potential 3

P , . %9’ . ,
V==, fer =120, zr="h) tr y=i1, 20
|(grad @)’ | =0  for 2" =—o0, (grad @)’ = me, for a’=oo

The last condition arises from the boundedness of the electriec field at
x m e , Linearized hydrodynamic

- >+ equations have the form
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Nondimensional quantities are introduced by Equations
1 s

. ey o, = ¥ L A et
v=uex+veu——UN. —p.N! '—ch

Here ¢, 1s the value of the unperturbed density, g , v and g are
perturbations of density, velocity and entropy, respectively.

In this connectlion the perturbation of velocity must satisfy the boundary
condltions
v =0 for ¥y =41, vi=20 for &’ = — oo
As 1s known, system (2) is reduced to Laplace's equation for o with
mixed boundary conditions (3). This problem can be solved {1 and 2] through

the equation of Keldysh-Sedov. For a magnetic fleld glven by equality (1)
the solution has the form

89’ _ (B 4+ 1) (& cos 2B — k%) o
2 1 + Ke** — 2k%>* cos 2B
Vi 11— K%®sin p — k2 cos 2§ — ke si
+4 (@, B)V zx+ : Smﬁ 2ae B 4ae nﬂ—
g 1 — 2k2e** cos 2 + ke

¢ cos P + *sin 2B — k2> cos P

—B(p VE+1 1 — 2k2%* cos 2f + Ktet® +
K41 ) V 1+ 26 cos 28 + e** — 1 — ¢ cos 28 )'/"
+ 4 (@, B) (n - >+ To S‘g“f‘( 2 + 46* cos 28 + 2
o (k* + 1) 2* sin 2B
8x" |+ KAt — 2k22% cos 2B

e*cos P + €% sin 28 — k2% cos P

'/ 2

TAEP VE+ 1 — 2k%%* cos 2f - ket
Vi 11 — k%" sin P — k2 cos 28 — ke sin B

TEEP T 1 — 2k%®* cos 2B + Ktet® ¥

Vi -+ 26 cos 2B + 4% 41422 cos2p )1/'
2 + 42 cos 2B + 2.4

+

+ B (0, ) (n —’k%-;“i)—'fo(

V1+ 2% cos 2B + A% — 1 + ¢20 )”’ ( nz ny
2 + 4e%sin p + 262° )

V1+2e2“cos2|s+e4“+1_e2“)"’ (,r.=__n_Vk‘+i+k’+1)
2 + 4e®sin B - 262* I’3 K3

We note that the electrlic fleld in the channel is independent of the form
of the magnetic field in the reglon between the electrodes since the field
enters only through the boundary conditions on the insulator.

Using these expresslons we can calculate from (2) and (4) the diatribu-
tion of cwrrents, of forces and of dissipation in the channel, Plgs. 1
and 2 present the fleld of directions of electric current and the distribu~
tion of dissipation across the channel for different values of x &t ke 1.

won

B(a,ﬂ)=(

From system (4) we eliminate p and e and obtain ®)
X’
au’ v’ oy’ v . AF
B O =) — g =M == Q]  —gmtgp=h— |Gl
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In this connection p’ and e’ are found from Equations

>

x
. N .. . \
P':—M“u"'-“,}‘éﬂ}—M? \ﬁxdx, Er=y(y — 1) \de’ (7

— —0

Equations of characteristics of the system of equations (6) have the form

ST S I g
y=4 V'ﬁz——jxv b "‘f‘V*vaJ‘" (8
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For'numerical solutlon of the problem an orthogonal net of points x/,
and g, was selected in such a manner that Ay = Y — Ym= 0.1, Az’ was
: :

selected equal to V372 —1Ay.
005 ‘\

g

I
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Fig. 2
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For determination of values u’, v’, p/ and g’ at the point x’,y’, the
values of these quantitles at points

, 0

;. , . .
Zy 1Ym-1r Tn-1Ym Fno1¥mer

were utilized. For computation of integrals in solving Equations (8) and
{(7), the trapezoid equation without interstitial points between points of
the net was utiliged here.

Computations were carried out on the "Strela" electronic computer for
combinations of parameters presented in Table 1,

Table 1 Table 2
k M I b " xo % .
1 1.41 | 0.45| 1.4
04 | —0.35 |—0.05 0.45
i iﬁ 8'§ iZ 1 —0.55 |—0.05 0.45
1 2.0 0.45 | 1.4 10 —1.55 ~8.§>§ g.g
0.4 | 1.41 | 0.45| 1.4 1 —0.65 |—0. §

Results, The presence of ring currents with a singuler point llke a cen~
ter on the axis of the channel at the entrance of the flow into the magnetilc
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field (Fig.l) appears as a characteristic pecullarity of the electric current
field. The region of ring currents 1s separated from the region where the
currents are closed through the electrodes by a separatrix which terminates
on the walls of the channel at x < 0 1in saddle singular points,

On the electrode ends the current denslty becomes infinite, however, the
total current, the total amount of Joule heat and the impulse which are
transferred to the fluld in any reglon near these singular points are finite.

With increase in parameter ¥ , i.e. with motion of the magnetic field
out beyond the electrodes, the region of ring currents also moves away up-
stream. Thus, values of abscissas of the singular point center X° and of
the saddle singular point X~ are presented in Table 2.

If the load coefficient is decreased, the reglon of ring currents is also
displaced upstream and the density of currents increases.

In the downstream direction the field of currents rapidly becomes one-
dimenslonal. Thls, at one quarter of channel width from the electrode ends
(2’ ~0.5) the ratio of currents f,/j,~0.015 (x = 1).
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Joule dissipation 1s small for large negative x’ (Fig.2). (In Fig.2 and
in the following figures the values of x’ for which the curves are presented
are shown next to the corresponding curves), For example ¢ < 0.05 for
=1 at x'=-— 1,65,
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For x’ comparable to.va,disaipation at the wall increases at the expense
of increase in current density, In the vieinity of the singular point center
the dissipation decreases. In the vicinity of the separation line between
currents (separatrix) dissipation in the
central part of the channel increases

d -0 25 ' sharply. At the walls i1t i1s the opposite;
! | . dissipation decreases to zero in the vici-
075 \ nity of the saddle singular podnt. In the vicd-
gpp— T 1 nity where the electrode starts, a sharp
745 ————-:i55§ increase in dissipation occurs near the
004 G685 7 45 R~ wells. After that a smoothing of diesi-
_a:::::laﬂzg pation over the cross-section takes place.
7 745 o At x'= 0.85 for » =1 and n = 0.45
s /‘ the relative change of ¢ across the
-0.04 b channel is of the order of 0.03.
Fig. 5 Since for decrease in 3 the saddle

singular point approaches x'm= 0 , the
total quantity of heat, given off in the vicinity where the electrode starts,
decreases due to small dissipation in the vicinity of the saddle singular
point.
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With decreases in the load coefficient dissipation o0 increases.
The values of (¢ on the axis of the channel for » = 1 are presented

for three values of x’

z =—0.25 —0.05 0.65
Q =0.06 0.27 0.3 for 1 =—=0.45
Q=0.12 0.39 0.49 for 1=0.30

Dissipation determines the increase in entropy. A plot of entropy for
=1, N=1lM4 , n=0,4 18 presented in Fig.3.

For large negative x’ the pressure changes little across the chamnel,

Thus, for k= 1 , ¥ = 1.4 and n = 0.5 at x'e — 1.15 the relative
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change of pressure across the channel is of the oxder of 0.2 . For x' of
the order orJYV, near the wall a transverse force appears directed towards
the axis of the channel. This force decreases the pressure in the indicated
reglon. As a result of this a reglon of rarefaction arises on some part of
the wall, In this region a flattened expansion wave is formed,

In the vicinity where the electrodes start, a compression wave 1s formed
at the expense of increase 1n dissipation and decelerating force, With
decrease in &k this compression wave becomes weaker due to decrease 1in heat
discharge in this region.

After transition through the region of

“ ”33—_752;\‘ strong dissipation an expansion wave 1s
"y ;ﬁ‘\\ formed which i1s particularly intensely mani-
—— 065 fested in the case k=1, n = 0.3 and
¥ = 1.4 when the dissipation in the vici-
--—-::::j"—-ﬂ~"“~r£3z\ nity where the electrodes begln 1s especisally
-0.8 bl = % great.
— 235 For positlve values of x'(x'> 0.25) a
d}j linear increase with respect to x’ of the
average pressure over the cross-section
04 ~ 2175 occurs. Waves mentloned above propagate
\S>¥ 005 against this background., Curves for pres-
] Nl sure distribution are presented in Figs. &4
had and 5.
g ¥ /

For large negative x’ uniform decelera-
Fig. T tion of the stream takes place (u < 0) as
a result of heat discharge due to dissipa-

tion (Figs. 6 and 7).

Further downstream the deceleration 1n the center part decreases due to
increasing accelerating force. For x’ close to =~ acceleration of the
stream near the wall takes place produced by the negative pressure gradient.
In the vicinity of the separatrix sharp deceleration of the stream commences.
Further a linear, with respect to x‘, decrease of the average magnitude of
veloclity over the cross sectlon ocecurs.

The magnitude of perturbation of transverse velocity 1s by an order smal=-
ler than the magnitude of perturbation of longitudinal velocity, 1l.e.
v’'/u’~ 0.1 . In the region of ring currents a compression of the stream
takes place towards the center (»’< 0 for y > 0) due to transverse forces.
After passing through the center the stream expands again and a compression
wave propagates through the stream from the electrode ends. Purther these
waves propagate downstream.

In conclusion we note that approximately one quarter of channel width
downstream from the beginning of electrodes the stream already becomes prac-
tically uniform and from here down can be computed from one-dimensional
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theory. As initial data for such a calculation it 1s necessary to take quan-
titles which are obtailned from two-dimensional theory after thelr averaging
over the wldth of the channel, If one 1s interested not only in the average
characteristics of the stream, 1t 1s possible to examlne the propagation of
waves, which arise at the entrance and which in this paper are computed by
the linear theory, agailnst a background which 1s computed by one~dimensional
nonlinear theory.
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